Vol. 2/3, December 2002

18

Classification and Regression by

randomPForest

Andy Liaw and Matthew Wiener

Introduction

Recently there has been a lot of interest in “ensem-
ble learning” — methods that generate many clas-
sifiers and aggregate their results. Two well-known
methods are boosting (see, e.g., Shapire et al., 1998)
and bagging Breiman (1996) of classification trees. In
boosting, successive trees give extra weight to points
incorrectly predicted by earlier predictors. In the
end, a weighted vote is taken for prediction. In bag-
ging, successive trees do not depend on earlier trees
— each is independently constructed using a boot-
strap sample of the data set. In the end, a simple
majority vote is taken for prediction.

Breiman (2001) proposed random forests, which
add an additional layer of randomness to bagging.
In addition to constructing each tree using a different
bootstrap sample of the data, random forests change
how the classification or regression trees are con-
structed. In standard trees, each node is split using
the best split among all variables. In a random for-
est, each node is split using the best among a sub-
set of predictors randomly chosen at that node. This
somewhat counterintuitive strategy turns out to per-
form very well compared to many other classifiers,
including discriminant analysis, support vector ma-
chines and neural networks, and is robust against
overfitting (Breiman, 2001). In addition, it is very
user-friendly in the sense that it has only two param-
eters (the number of variables in the random subset
at each node and the number of trees in the forest),
and is usually not very sensitive to their values.

The randomForest package provides an R inter-
face to the Fortran programs by Breiman and Cut-
ler (available at http://www.stat.berkeley.edu/
users/breiman/). This article provides a brief intro-
duction to the usage and features of the R functions.

The algorithm

The random forests algorithm (for both classification
and regression) is as follows:

1. Draw 74y bootstrap samples from the original
data.

2. For each of the bootstrap samples, grow an un-
pruned classification or regression tree, with the
following modification: at each node, rather
than choosing the best split among all predic-
tors, randomly sample m1,, of the predictors
and choose the best split from among those

R News

variables. (Bagging can be thought of as the
special case of random forests obtained when
My = p, the number of predictors.)

3. Predict new data by aggregating the predic-
tions of the #1¢rc trees (i.e., majority votes for
classification, average for regression).

An estimate of the error rate can be obtained,
based on the training data, by the following:

1. At each bootstrap iteration, predict the data
not in the bootstrap sample (what Breiman
calls “out-of-bag”, or OOB, data) using the tree
grown with the bootstrap sample.

2. Aggregate the OOB predictions. (On the av-
erage, each data point would be out-of-bag
around 36% of the times, so aggregate these
predictions.) Calcuate the error rate, and call
it the OOB estimate of error rate.

Our experience has been that the OOB estimate of
error rate is quite accurate, given that enough trees
have been grown (otherwise the OOB estimate can
bias upward; see Bylander (2002)).

Extra information from Random Forests

The randomForest package optionally produces two
additional pieces of information: a measure of the
importance of the predictor variables, and a measure
of the internal structure of the data (the proximity of
different data points to one another).

Variable importance This is a difficult concept to
define in general, because the importance of a
variable may be due to its (possibly complex)
interaction with other variables. The random
forest algorithm estimates the importance of a
variable by looking at how much prediction er-
ror increases when (OOB) data for that vari-
able is permuted while all others are left un-
changed. The necessary calculations are car-
ried out tree by tree as the random forest is
constructed. (There are actually four different
measures of variable importance implemented
in the classification code. The reader is referred
to Breiman (2002) for their definitions.)

proximity measure The (7, j) element of the prox-
imity matrix produced by randomForest is the
fraction of trees in which elements i and j fall
in the same terminal node. The intuition is
that “similar” observations should be in the
same terminal nodes more often than dissim-
ilar ones. The proximity matrix can be used

ISSN 1609-3631

Vol. 2/3, December 2002

19

to identify structure in the data (see Breiman,
2002) or for unsupervised learning with ran-
dom forests (see below).

Usage in R

The user interface to random forest is consistent with
that of other classification functions such as nnet ()
(in the nnet package) and svm() (in the e1071 pack-
age). (We actually borrowed some of the interface
code from those two functions.) There is a formula
interface, and predictors can be specified as a matrix
or data frame via the x argument, with responses as a
vector via the y argument. If the response is a factor,
randomForest performs classification; if the response
is continuous (that is, not a factor), randomForest
performs regression. If the response is unspecified,
randomForest performs unsupervised learning (see
below). Currently randomForest does not handle
ordinal categorical responses. Note that categorical
predictor variables must also be specified as factors
(or else they will be wrongly treated as continuous).

The randomForest function returns an object of
class "randomForest". Details on the components
of such an object are provided in the online docu-
mentation. Methods provided for the class includes
predict and print.

A classification example

The Forensic Glass data set was used in Chapter 12 of
MASS4 (Venables and Ripley, 2002) to illustrate vari-
ous classification algorithms. We use it here to show
how random forests work:

> library(randomForest)
> library (MASS)
> data(fgl)
> set.seed(17)
> fgl.rf <- randomForest(type ~ ., data = fgl,
+ mtry = 2, importance = TRUE,
+ do.trace = 100)

100: 00B error rate=20.567

200: 00B error rate=21.03%

300: 00B error rate=19.63%

400: 00B error rate=19.63%

500: 00B error rate=19.167
> print (fgl.rf)
Call:

randomForest.formula(formula = type ~ .,

data = fgl, mtry = 2, importance = TRUE,
do.trace = 100)
Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

00B estimate of
Confusion matrix:

WinF WinNF Veh Con Tabl Head class.error

WinF 63 6 1 0 0 0 0.1000000

WinNF 9 62 1 2 2 0 0.1842105

error rate: 19.16%

R News

Veh 7 4 6 O 0 0 0.6470588
Con 0 2 0 10 0 1 0.2307692
Tabl 0 2 0 O 7 0 0.2222222
Head 1 2 0 1 0 25 0.1379310

We can compare random forests with support
vector machines by doing ten repetitions of 10-fold
cross-validation, using the errorest functions in the
ipred package:

> library(ipred)
> set.seed(131)
> error.RF <- numeric(10)
> for(i in 1:10) error.RF[i] <-
+ errorest(type ~ ., data = fgl,
+ model = randomForest, mtry = 2)$error
> summary (error.RF)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1869 0.1974 0.2009 0.2009 0.2044 0.2103
library(e1071)
set.seed(563)
error.SVM <- numeric(10)
for (i in 1:10) error.SVM[i] <-
errorest(type ~ ., data = fgl,
model = svm, cost = 10, gamma = 1.5)$error
summary (error.SVM)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.2430 0.2453 0.2523 0.2561 0.2664 0.2710

vV + + V V Vv VvV

We see that the random forest compares quite fa-
vorably with SVM.

We have found that the variable importance mea-
sures produced by random forests can sometimes be
useful for model reduction (e.g., use the “important”
variables to build simpler, more readily interpretable
models). Figure 1 shows the variable importance of
the Forensic Glass data set, based on the fgl.rf ob-
ject created above. Roughly, it is created by

> par(mfrow = c(2, 2))

> for (i in 1:4)

+ plot(sort(fgl.rf$importance[,i], dec = TRUE),
+ type = "h", main = paste("Measure", i))

We can see that measure 1 most clearly differentiates
the variables. If we run random forest again drop-
ping Na, K, and Fe from the model, the error rate re-
mains below 20%.

ISSN 1609-3631

Vol. 2/3, December 2002

20

Measure 1 Measure 2

40

RI Rl Mg a
Mg

30
15

Ca
Ba

20
10

) K Na
Ba Si si

10
>
5

Fe
(=} I . . o

Measure 3 Measure 4

RI Mg Al Mg o
Ca
Na

0.6

ca Al
Bk g Na fe

15 20 25

I<Si

Ba

0.4

10

Fe

0.2
5

o

0.0

Figure 1: Variable importance for the Forensic Glass
data.

The gain can be far more dramatic when there are
more predictors. In a data set with thousands of pre-
dictors, we used the variable importance measures to
select only dozens of predictors, and we were able to
retain essentially the same prediction accuracy. For a
simulated data set with 1,000 variables that we con-
structed, random forest, with the default my,y, we
were able to clearly identify the only two informa-
tive variables and totally ignore the other 998 noise
variables.

A regression example

We use the Boston Housing data (available in the
MASS package) as an example for regression by ran-
dom forest. Note a few differences between classifi-
cation and regression random forests:

e The default m., is p/3, as opposed to p'/? for
classification, where p is the number of predic-
tors.

o The default nodesize is 5, as opposed to 1 for
classification. (In the tree building algorithm,
nodes with fewer than nodesize observations
are not splitted.)

o There is only one measure of variable impor-
tance, instead of four.

> data(Boston)
> set.seed(1341)
> BH.rf <- randomForest (medv
> print (BH.rf)
Call:
randomForest.formula(formula = medv ~ .,
data = Boston)
Type of random forest: regression
Number of trees: 500

., Boston)

R News

No. of variables tried at each split: 4

Mean of squared residuals: 10.64615
% Var explained: 87.39

The “mean of squared residuals” is computed as
n
MSEoop = 1! Z{]/i — 90812,
T

where 99 is the average of the OOB predictions
for the ith observation. The “percent variance ex-
plained” is computed as

~ MSEqos

~
Oy

1

7

where @'; is computed with n as divisor (rather than
n—1).

We can compare the result with the actual data,
as well as fitted values from a linear model, shown

in Figure 2.

40

30 30
Actual

Scatter Plot Matrix

Figure 2: Comparison of the predictions from ran-
dom forest and a linear model with the actual re-
sponse of the Boston Housing data.

An unsupervised learning example

Because random forests are collections of classifica-
tion or regression trees, it is not immediately appar-
ent how they can be used for unsupervised learning.
The “trick” is to call the data “class 1” and construct a
“class 2” synthetic data, then try to classify the com-
bined data with a random forest. There are two ways
to simulate the “class 2” data:

1. The “class 2” data are sampled from the prod-
uct of the marginal distributions of the vari-
ables (by independent bootstrap of each vari-
able separately).

ISSN 1609-3631

Vol. 2/3, December 2002

21

2. The “class 2” data are sampled uniformly from
the hypercube containing the data (by sam-
pling uniformly within the range of each vari-
ables).

The idea is that real data points that are similar to
one another will frequently end up in the same ter-
minal node of a tree — exactly what is measured by
the proximity matrix that can be returned using the
proximity=TRUE option of randomForest. Thus the
proximity matrix can be taken as a similarity mea-
sure, and clustering or multi-dimensional scaling us-
ing this similarity can be used to divide the original
data points into groups for visual exploration.

We use the crabs data in MASS4 to demonstrate
the unsupervised learning mode of randomForest.
We scaled the data as suggested on pages 308-309
of MASS4 (also found in lines 28-29 and 63-68
in ‘$R_HOME/library/MASS /scripts/ch11.R’), result-
ing the the dslcrab data frame below. Then run
randomForest to get the proximity matrix. We can
then use cmdscale() (in package mva) to visualize
the 1—proximity, as shown in Figure 3. As can be
seen in the figure, the two color forms are fairly well
separated.

> library(mva)

> set.seed(131)

> crabs.prox <- randomForest(dslcrabs,

+ ntree = 1000, proximity = TRUE)$proximity
> crabs.mds <- cmdscale(l - crabs.prox)

> plot(crabs.mds, col = c("blue",

+ "orange") [codes(crabs$sp)], pch = c(1,

+ 16) [codes(crabs$sex)], xlab="", ylab="")

0.3
|

0.0 0.1
|

©®

6

-0.1
|
w®
©

® B/F
oM
O/F

o BM| & &
o]
0

-0.3
1

-0.4 -0.2 0.0 0.2 0.4

Figure 3: The metric multi-dimensional scaling rep-
resentation for the proximity matrix of the crabs
data.

There is also an outscale option in
randomForest, which, if set to TRUE, returns a mea-
sure of “outlyingness” for each observation in the

R News

data set. This measure of outlyingness for the jth
observation is calculated as the reciprocal of the sum
of squared proximities between that observation and
all other observations in the same class. The Example
section of the help page for randomForest shows the
measure of outlyingness for the Iris data (assuming
they are unlabelled).

Some notes for practical use

e The number of trees necessary for good perfor-
mance grows with the number of predictors.
The best way to determine how many trees are
necessary is to compare predictions made by a
forest to predictions made by a subset of a for-
est. When the subsets work as well as the full
forest, you have enough trees.

e For selecting 1.y, Prof. Breiman suggests try-
ing the default, half of the default, and twice
the default, and pick the best. In our experi-
ence, the results generally do not change dra-
matically. Even my,, = 1 can give very good
performance for some data! If one has a very
large number of variables but expects only very
few to be “important”, using larger m,, may
give better performance.

o A lot of trees are necessary to get stable es-
timates of variable importance and proximity.
However, our experience has been that even
though the variable importance measures may
vary from run to run, the ranking of the impor-
tances is quite stable.

e For classification problems where the class fre-
quencies are extremely unbalanced (e.g., 99%
class 1 and 1% class 2), it may be necessary to
change the prediction rule to other than ma-
jority votes. For example, in a two-class prob-
lem with 99% class 1 and 1% class 2, one may
want to predict the 1% of the observations with
largest class 2 probabilities as class 2, and use
the smallest of those probabilities as thresh-
old for prediction of test data (i.e., use the
type=’prob’ argument in the predict method
and threshold the second column of the out-
put). We have routinely done this to get ROC
curves. Prof. Breiman is working on a similar
enhancement for his next version of random
forest.

e By default, the entire forest is contained in the
forest component of the randomForest ob-
ject. It can take up quite a bit of memory
for a large data set or large number of trees.
If prediction of test data is not needed, set
the argument keep.forest=FALSE when run-
ning randomForest. This way, only one tree is
kept in memory at any time, and thus lots of

ISSN 1609-3631

Vol. 2/3, December 2002

22

memory (and potentially execution time) can
be saved.

¢ Since the algorithm falls into the “embarrass-
ingly parallel” category, one can run several
random forests on different machines and then
aggregate the votes component to get the final
result.

Acknowledgment

We would like to express our sincere gratitute to
Prof. Breiman for making the Fortran code available,
and answering many of our questions. We also thank
the reviewer for very helpful comments, and point-
ing out the reference Bylander (2002).

Bibliography
L. Breiman. Bagging predictors. Machine Learning, 24
(2):123-140, 1996. 18

L. Breiman. Random forests. Machine Learning, 45(1):
5-32,2001. 18

L. Breiman. Manual on setting up, using, and
understanding random forests v3.1, 2002.
http://oz.berkeley.edu/users/breiman/
Using_random_forests_V3.1.pdf. 18,19

T. Bylander. Estimating generalization error on two-
class datasets using out-of-bag estimates. Machine
Learning, 48:287-297,2002. 18, 22

R. Shapire, Y. Freund, P. Bartlett, and W. Lee. Boost-
ing the margin: A new explanation for the effec-
tiveness of voting methods. Anmnals of Statistics, 26
(5):1651-1686, 1998. 18

W. N. Venables and B. D. Ripley. Modern Applied
Statistics in S. Springer, 4th edition, 2002. 19

Andy Liaw

Matthew Wiener

Merck Research Laboratories
andy_liaw@merck.com
matthew_wiener@merck.com

Some Strategies for Dealing with

Genomic Data

by R. Gentleman

Introduction

Recent advances in molecular biology have enabled
the exploration of many different organisms at the
molecular level. These technologies are being em-
ployed in a very large number of experiments. In this
article we consider some of the problems that arise in
the design and implementation of software that asso-
ciates biological meta-data with the experimentally
obtained data. The software is being developed as
part of the Bioconductor project www.bioconductor.
org.

Perhaps the most common experiment of this
type examines a single species and assays samples
using a single common instrument. The samples are
usually homogeneous collection of a particular type
of cell. A specific example is the study of mRNA ex-
pression in a sample of leukemia patients using the
Affymetrix U95A v2 chips Affymetrix (2001). In this
case a single type of human cell is being studied us-
ing a common instrument.

These experiments provide estimates for thou-
sands (or tens of thousands) of sample specific fea-
tures. In the Affymetrix experiment described previ-

R News

ously data on mRNA expression for approximately
10,000 genes (there are 12,600 probe sets but these
correspond to roughly 10,000 genes). The experi-
mental data, while valuable and interesting require
additional biological meta-data to be correctly inter-
preted. Considering once again the example we see
that knowledge of chromosomal location, sequence,
participation in different pathways and so on pro-
vide substantial interpretive benefits.

Meta-data is not a new concept for statisticians.
However, the scale of the meta-data in genomic
experiments is. In many cases the meta-data are
larger and more complex than the experimental data!
Hence, new tools and strategies for dealing with
meta-data are going to be needed. The design of
software to help manage and manipulate biological
annotation and to relate it to the experimental data
will be of some importance. As part of the Biocon-
ductor project we have made some preliminary stud-
ies and implemented some software designed to ad-
dress some of these issues. Some aspects of our in-
vestigations are considered here.

ISSN 1609-3631

